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PREFACE

This Memorandum is part of a series of continuing studies on

orbital perturbations under NASA contract NASr-21 (02). It represents

an extension to a previous RAND report, R-S99-NASA, "Perturbations of

a Synchronous Satellite," by R. H. Frick and T. B. Garter. The

results should be of interest to any agency concerned with long

term satellite station-keeping.
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SUMMARY

This Memorandum analyzes the perturbations of circular equatorial

orbits due to the ell_pticity of the earth's equatorial section. The

results indicate that with the exception of orbits with periods of 12,

24, and 36 hours, the perturbations due to equatorial ellipticity are

negligible and completely dominated by the perturbations resulting from

initial condition errors. In particular, initial errors in orbital

radius and orbital velocity cause steady state drifts in angular

position of the satellite which are not influenced by the earth's

equatorial ellipticity.

The three special periods include the 24-hour synchronous orbit

which, as shown previously, (1) undergoes long period oscillations in

longitude about the position of the minor axis of the earth's

equatorial section. In addition, the orbits with 12 and 36 hour

periods are resonant orbits in which the driving function resulting

from equatorial ellipticity has a frequency equal to orbital

frequency. This results in a divergent oscillatory perturbation at

orbital frequency in both orbital radius and orbital angle. The rates

of buildup of the smplitudes of these oscillations are 30.4 n mi/yr

in radius and .243 deg/yr in angle for the 12-hour orbit. _ne

corresponding figures for the 36-hour orbit are 35.1 n mi/yr and

.131 deg/yr.* These divergent oscillations are the dominant oscillatory

effect for these two orbits, but they are still subject to the steady

state drift in angledue to initial condition errors.

*The exact values of these rates are dependent on the assumed
ellipticity of the earth's equatorial section.
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SYMBOLS

go = gravitational acceleration at the earth's surface

J2 = earth oblateness coefficient

J2 (2) = equatorial ellipticity coefficient

k 2 = modified elllptlcity coefficient

n = ratio of orbital rate to earth rate

RE = mean earth radius

r = radial distance from earth's center to satellite

r = circular orbital radius corrected for oblateness
c

r = synchronous orbital radius
S

r = circular orbital radius without oblateness
o

Ar = perturbation in r

Ar = amplitude of divergent oscillation in Ar
m

Ar = initial value of Ar
O

Ar = initial value of rate of change of Ar
0

5(At o) = error in Ar °

5(A%) = error in Ar0

t = time

U = earth's gravitational potential

5V = error in initial orbital velocity
o

V = angle between r and minor axis of earth's equatorial
section

Vo = initial value of

= rate of change of V

e = satellite central angle measured from inertial reference

= rate of change of 8



X

8E

_E

eo

Ae = perturbation in

Aem = amplitude of divergent oscillation in A8

A_° --i_tialv_ueofA_

A_ss = steady state value of ,_b

8(AbO) = error in 4 0

= earth rotation angle measured from inertial reference

= earth's angular rate

= unperturbed orbital angular rate
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I. I_TRODUCTION

It has been shown in Refs. 1 and 2 that a synchronous equatorial

satellite under the influence of the earth's equatorial ellipticity

will undergo long period oscillations in longitude about the position

of the minor axis of the earth's equatorial section.

_ais Memorandum considers the effect of this s_e ellipticity on

circular equatorial orbits of any period. The analysis as presented

in Section II is similar to the perturbation method used in Ref. 1

with the generalization that the orbital angular rate no longer

equals the earth's rate. The solution of the perturbation equations

shows the sensitivity of the resulting drift rate to initial condition

errors. Three special cases of the general solution are also

considered: the synchronous orbit and the two resonant orbits with

angular rates of twice and two-thirds of earth rate.
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II. ANALYSIS

STATEMENT OF THE PROBLaM

If a satellite is established in a circular equatorial orbit

with an angular rate of eo' what are the perturbations in angular

rate and orbital radius resulting from the earth's equatorial

ellipticity_

REFERENCE SYSTEM

In Fig. i the XY coordinate system is a geocentric inertial

reference system in the earth's equatorial plane. The line AA' is

the minor axis of the earth's equatorial section which rotates at

earth rate, eE" The instantaneous position of the satellite S is

specified by its radial distance, r, and its central angle e_

measured from the X axis. The angle V is the instantaneous central

angle between the satellite radius, r, and the minor axis AA'.

EQUATIONS OF MOTION

In Ref. i, the general equations of motion are developed. The

potential function used is of the following form for the equatorial

plane:

U= + J2-- + 2) __
2r2 r2 cos 2V (i)

The resulting equations of motion in the equatorial plane are of the

form

d2r r02 g_r 3J2g°R_2r4 9J2(2)g°_r4
dr---_ - = cos 2_ (2)
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S

Y

A

0 X

R

Fig. I-- Reference system
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1 d (r20) = 6J2(2)g°_ sin 27 (3)

r

PERTUEBATION EQUATIONS

If the desired orbital angular rate is eo' a set of perturbation

variables can be defined as follows:

r = r + Ar (4)
C

?_= ?_o+ _ (5)

where rc is the circular orbital radius corresponding to eo (rc is

corrected for the effect of earth oblateness).

Also the angle V can be expressed in the form

where

7 = vt + 7o

_' " eo" eE

(6)

(7)

Substitution of Eqs. (4), (5)_ and (6) into Eqs. (2) and (3) gives

the deslred perturbation equations as follows:

dt 2 c eo

= 9k 2 82 cos 2(yt + yo ) (8)

_t (_-)Ar+ _d (.A__8)= 6k2 _o sin 2(7t + 70 )

c 80

(9)

where

For details see pp 6-8 in Ref. i.
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(2)
k2 = " J2 -_

r
c

(lo)

and the value of r
c

is obtained from the equation

rc o=--T + 4
r 2r
c c

(ll)

The approximate solution of Eq. (ll) is

r = r
c o

( _)i + ----_
2r

o

(12)

where r° is the orbital radius corresponding to eo if there were no

oblateness_ as given by

r 3 = goR_

o _o 2

(13)

PERTURBATION SOLUTION

Equations (8) and (9) can be solved simultaneously to give

2n cos 27o_-Er= 3k2 "nZi
r C

2n (n-3) sin S_o sin n eEt

(n-'2) (3n-2)

n(Sn-8) cos 2_o cos neE t

(n-2) ('3n- 2)

_n-_l_o_r_n-__o_]n 2

(n-l) (n-2) (3n-'2) ]

Ar

SEt o ++ (4 - 3 cos n )
c

_ _t_o _o
• r + 2(l-cos n 0Et) --

ne E c r_9E

(z_)
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I 3n cos _ °_-_=_2n - 2(n-l)'
eE

n(_-8)cos_o _ n jZt
+ ln-2)' (3n-2)'

+

(n-3)sin_o sinn jet
(n-2) (3n-2)

2(n-l) (n-2)('3n-2)

_r° 2 _inn _ztA_o
- 6n (1-cos n 8Et) _-- -

r
c E c

+ (4_s n jet
8E

(15)

where Aro, Ar and A80 are the initial values of Ar, Ar, and Aj

respectivelyp and n is given by

Jo
n -- --

Q

0 E

(16)

An exsmination of Eqs. (i_) and (15) shows that they are

indeterminate for n = 2/33 i, and 2, corresponding to orbital periods

of 36, 24, and 12 hours. _1_ese cases are evaluated in the next

section of the report.

For amy other value of n than the three specified above, Eqs.

(14) and (15) are valid solutions. By a suitable selection of
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initial conditions, the coefficients of cos n eEt, sin neE t and the

constant term in Eq. (15) can be made zero. The required initial

conditions are as follows:

Aro 3k2 n2 (n-3) cos 27o 5(Arc)

_--=- (n-z) (n-2) (jn-2) + r (17)
C C

A% 6k2 eEn 2 (n-3) sin 27o 5CAr)

_--= (n-2) (3n-2) + r (18)
C C

Ae° 3k2 n2 (n2-2n+4) cos 2_o

8E (n-l)" (n-2) (3n-2) eE
(19)

In each of these expressions the first term is the required initial

condition while 6(Arc) , 8(A%) and 5(Aeo) are the residual errors in

achieving the desired value. Substitution of Eqs. (17), (18), and

(19) into Eqs. (14) and (15) reduces the solution to

Ar

r
c

3k2 n2 (n-3)cos 2 [(n-l)eEt + Vo]

(n-l) (n-2) (3n-2)

+ (4-3 cos n eEt)

6(Aro) sin n 0Et 6(Aro)
+

r • r

c ne E c

+ 2 (1-cos neE t)
n_E

(20)
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,_ = . _2 n2 (n2

#s

÷4)cos2[(nl) +
(n-l) (n-2) (3n-2)

5(At O) 2 sin n eE t 8(,%ro )

- 6n (1-cos n _zt). re _E re

+ (4 cos n 8E t - 3)
(21)

An exemination of Eqs. (20) and (21) shows that the earth's

equatorial ellipticity causes a bounded oscillation with a frequency

of 2(n-l) @E in both Ar and A_. In addition the errors in the

initial conditions introduce oscillatory terms at orbital frequency,

n 8E as well as constant bias terms. In particular, the steady

state bias term in Eq. (21) would result in a steady drift of the

satellite relative to the desired orbital rate_ n BE"

SPECIAL CASES

It was indicated in the previous section that Eqs. (14) and (15)

become indeterminate for n = 2/3, i and 2. These cases are considered

below.

S_nchronous Satellite (n = i)

If the limits of Eqs. (14) and (15) are taken as n approaches

i the following expressions are obtained
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r_--r_-_ _3_o__o" 3 _o__o co_4t
c

- 4 sin 2y ° sin eE t + 449Et sin 2yo _

_r sinletA½
_.t) o ++ (4-3 cos T--

r
C E c

+ 2 (l- co._&Et)-
eE

(22)

a__ = 6k2 [. 3 cos 2Yo + 3 cos 2yo cos let
_E

+ k sin 2Yo sin &Et - 3&Et sin 2yo_

ArO 2 sin lEt A%

- 6 (i - cos eEt) r r

c 8E c

_@_
+ (_cos4t - 3)__o

eE

(23)

As before, the constant term and the coefficients of cos nEt and

sin eEt in Eq. (23) can be set equal to zero, so that the desired

initial conditions are

_ro 6(_ro)
_-- =- Bk2 cos 2_° + r

c c

(2_)
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--- = i_2 eE sin _Yo + r '"
r c c

(25)

(26)

These initial oonditions reduce Eqs. (22) and (23) to

Ar

_--=- 3 2
_ _o + 12k2 ezt _in_o

_(',ro)
+ (4 - 3 cos JEt) _ +

C

sin JEt 5(Aro)_

r

eZ c

_(,,&o)
+ 2 (1- cos &zt)

e E

(27)

A__e= - 18k2 jet, sin _70
D

eE

_(_=o) 2 si=8_t8(_½)
-- - r

- 6 (i- cos _?) _ eE c

_(,,8o)
+ (4. cos _Et - 3)

eE

(28)
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The residual bias term in Eq. (27) can be regarded as an additional

correction to the stead_ state radius rc. Then it is seen that if

the residual initial condition errors are reduced to zero, Eqs. (27)

and (28) become

A_Er= 12k2 _Et sin _Vo (29)
r
c

A_e= - 18k2 bEt sin 2yo (30)

These relations are equivalent to Eqs. (53) and (54) of Ref. I.

Twelve Hour Period Satellite (n = 2)

If the limits of Eqs. (14) and (15) are taken as n approaches 2,

the following expressions are obtained

A_r = 3k2 [4 cos 2Vo - 4 cos 2yo cos 2eEt
r
c

+ _ sin 27o sin

Ar sin 2eEt Aro

_Et) o ++ (_- 3 cos 2 _-- r
c 2 E c

+ (1- _s 2_Et) .__e
eE

(3]-)
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_!=_2 ["3_os270÷ 3oos270cos2_Et

2_Et _Etsin _o)]+ _ sin 270 sin + 2(eE t +

_ro 2_in2_Et_o
- 12(i- _os2_Et)_---

c E c

A_
+ (4_s 2_zt- 3)--2°

eE
(32)

As before the constant term and the coefficients of cos 2eEt

and sin 2eEt are set equal to zero. The required initial conditions

are obtained as follows:

_% 5(_r)
?--=- 3k2 cos 270 +_r

C C

(33)

--Ar°r = 3k2 ;)E sin 2Vo + --8(A_O)r

C e

(34)

A@o 5(_eo)
--=0+

_z _Z
(35)

Substitution for the initial conditions in Eqs. (31) and (32) gives
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Ar =. :_2 :os 2(SEt + _o) -r
c

+ (4-3 cos 24.t)
e(_%)

r
c

+ (1- _ 28_.t)

_2 JEt sin 2(SEt+ _o)

+

28E rc

(36)

A__8= 12k2 _E t sin 2(eEt + yo )

8 E

- 12 (1- cos 24.t)
2sln 2_Et8(A½)

r _ r
c E c

+ (L_ cos 2SEt- 3) (37)

From Eqs. (36) and (37) it is seen that both Ar and _8 contain

oscillatory terms with amplltudes which increase with time.

36 Hour Period Satellite (n = 2/3)

If the limits of Eqs. (14) and (15) are taken as n s_proaches

2/3, the following expressions are obtained
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. 2_Eta_Er= 3k2 4 cos 270 + 4 cos 270 cos
r C

+{.n_o"_-7+{_ s_o_\_-_o

-- +

+ 4- 3 cos rc

24.t .
3 sin--T _r

2eE rc

8E

(38)

24.t_ = 4k2 3 oos 27o - 3 oos _o cos --y-
eE

5 sin 270 sin-- 7 _Et sin -"_ 3 "_ 2\-_-_o

Ar 2sin_ _t o
- 4 i- cos rc 8E rc

+I_ cos 2_Et 31 $_O

3 eE

(39)

2_Et
If as before the constant term and the coefficients of cos -7

2eEt
and sin ---_ in Eq. (39) are equated to zero_ the following initial

condition relations are obtained

8(Aro)
Ar + :_2 cos _o + (4o)
r r

c c

_--- = " _2 eE sin 270 + r
C C

(_)
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A_o 5(A_o)
_=0+

_E _E
(42)

Substitution of these initial conditions in Eqs. (38) and (39) gives

r I I

+
+ " B COS re

2_Et
s_in--3-6(A½)

2_ E rc

cos 3/ eE
(43)

_8_ _Et _ [4.t )--" T 2\--_-- _o
e E

- - cos

2eEt
2 sin--T 8(_o)

_E rc

3 eE

(_)

As in the case of the 12-hour period satellite, a divergent

oscillation appears in both Ar and AO.
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llI. RESULTS AND DISCUSSION

GENERAL SOLUTION

If n is not equal to 2/3, i or 2, an examination of Eqs. (20)

and (21) shows that the earth's equatorial ellipticity produces

bounded oscillations in both Ar and A_ at a frequency of 2(n-l) _E

or twice the orbital rate relative to the earth. _ese oscillations

result in displacements of the order of a few hundred feet relative

to an unperturbed satellite with an orbital rate n_E.

If in addition any residual initial condition errors exist,

oscillatory terms will be introduced in both Ar and Ae with a

of neE, the orbital rate relative to inertial space. Infrequency

additionj the initial condition errors will introduce constant bias

errors in Ar and A_ which will cause a steady state drift relative to

the unperturbed satellite. The magnitude of this drift is given by

the relation

where

SCAr)
A6ss =" 6nSE r 38(Aeo) (45)

C

r
s

rc =
(46)

nd3
=8Ao _-- r

C S

r = orbital radius for a synchronous
s satellite (22748.4 n mi)

8V = orbital velocity error
O
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Substitution of Eqs. (46) and (47) into (45) gives

A_ss = r6_E n5/3 8(Aro) " r--3n2/3 51/o

S S

Since the errors 8(Aro) and 5V are independent, the resulting

contributions to the steady state drift can be treated separately

so that

6eE n5/3 5(Aro)A6ss= - F-

= 34.66 n5/3 5(Aro) deg/yr/n mi (49)

where 8(Aro) is expressed in nautical miles.

• 3n2/38v°
AOss = r

s

= - 39.19 n_,3_l8Vo
ft/s

(5o)

where 8V° is in ft/s.

Figure 2 is a plot of Eqs. (49) and (50) as a function of n

plotted from n = 0 to n = 17.067 which corresponds to a surface

orbit with a period of 84.4 rain.

As an exsmple, for n = 9_ corresponding to an orbital period

of 4 hrs and 48 min and a nominal orbital radius equal to 7779.9

n mi, an error of .1 n mi in radius would result in a drift rate of

90.7 deg/yr.

Similarly an error of 1 ft/sec in orbital velocity would result

in a drift rate of 114.6 deg/yr.
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This sensitivity of drift rate to initial condition errors is

identical with that shown in Fig. _l of Bef. 3. Thus, it is seen

that the resulting drift rate is determined by the initial condition

errors. _ae presence of equatorial ellipticity merely changes the

desired values of the initial conditions as specified in Eqs. (17),

(18), and (19).

SPECIAL CASES

In the special cases when n = 2/3, i, or 2 it is seen that the

solutions for Ar and A_ include terms with amplitudes which increase

with time. The physical significance of these time dependent

solutions is discussed in the following paragraphs.

S_nchronous Satellite (n = i)

From Eqs. (29) and (30), it is seen that both Ar and Ae increase

linearly with time. However, in Eq. (7) which defines _ the

additive term of ae has been neglected as being small compared to

eo-eE. In the case of a synchronous satellite, this is no longer

valid, since 6° is equal to BE" If the Ae term is included in y,

it effectively causes a slow change in Vo in Eqs. (29) and (30).

Thus, these expressions for Ar and A_ are only valid for small values

of Ae (of the order of lO°). However, in Ref. 1 a more general

treatment of this problem is presented in which the limit on the

size of ae is removed. This more general trea_ent shows that Eqs.

(29) and (30) represent the initial part of a long period oscillation

in satellite longitude about the position of the minor axis of the

earth' s equatorial section.
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Twelv_Hour Period Satellite (n = 2)

This case and the one following for n = 2/3 are resonant orbits

in which the frequency of the perturbing function, _, is equal in

magnitude to the orbital ar_gular rate 0o" 1_nis condition is given

by the relation

= 2(n-l) 0E = + nee = + eo (91)

which is satisfied for n = 2 or 2/3.

For n = 2, Eqs. (36) and (37) show that both Ar and A_ contain

terms of the form t sin 2(0Et + _o ) which is the typical buildup of

an undamped resonant system excited at its natural frequency. Thus,

the amplitudes of Ar and A8 apparently grow without bound and the

Ar and A0 remain small.

solution is only valid during the time that r_ _E

It should be noted that the A0 contribution to _ would detune

the system slightly so that a beat frequency response would result

between the frequencies _ and 0o" However, the initial buildup of

this beat is represented quite well by Eqs. (36) and (37).

If the divergent term in Eq. (37) is integrated, the following

expression for the divergent term in Ae is obtained

Ae = - 6k2 2( Et + %) (52)

Thus for this orbit Ae has an oscillatory buildup at orbital

2_E,_ and with an amplitude A8m which increases at the ratefrequency,

: .2_3 deg/yr (53)
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where

and

(2)
k2 = " J2 ---_

r
c

(_)

r

s (55)
rc = (2)-_ = .6335 r s

J2 (2) = - 5.35 x i0 "6 (Ref. 4) (56)

Similarly, it is seen from Eq. (36) that Ar also has an oscillatory

buildup at orbital frequency with an em_litude Arm which increases

at a rate given by

Ar

m SET = " 3k2 re

= 30.4 n mi/yr (57)

If it is assumed that the initial errors in the radial and tangential

velocities are both 1 ft/sec and that the initial error in orbital

radius is i n mi, it can be shown that at the end of one year of

operation, the divergent terms described above are the dominant

oscillatory terms in both Ar and A0 as expressed in Eqs. (36) and (37)

However, the steady state drift rate in A0 is still present,

and its magnitude can be determined from Fig. 2 as

A0ss = llO.0 deg/yr aue to 8r°

and

A&ss= 62.2dedyr _e to 5v°



-22-

Thus a satellite with a 12-hour period would deviate fr_n its unperturbed

position with an oscillatory divergence superposed on a steady state

drift rate in angular position.

Thirty-Six Hour Period Satellite (n = 2/3)

The behavior of the 36-hour period satellite is sim_far to that

described above. For the ss_e initial position and velocity errors,

it can be shown from Eqs. (43) and (44) that the dominant oscillator_

terms in both Ar and Ae are the divergent oscillations at orbital

rate, 2e_3, with amplitudes which increase at rates given by

Ae

and

: O. 131 deg/yr (58)

Ar

= r:4

= 34.1 n mi/yr (59)

As before, the steady state drift rate in A_ can be evaluated for

the assumed initial conditions from Fig. 2 as

and

Aess : 17.6 deg/yr due to 5r°

aess : 29.9 deg/yr due to 5VO

Thus, as in the case of the 12-hour period satellite, the deviation

fr_n the unperturbed position is an oscillatory divergence at orbital

frequency superposed on a steady state drift rate in angular position.
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DISCUSSION

_ae analysis presented in this Memorandum is similar to that

developed by Blitzer in Ref. 5, in which he also investigates the

perturbations of equatorial orbits, and in particular, the resonant

12-hour and 36-hour orbits. The rate of increase in the divergent

amplitudes of Ar and AS, determined in Eqs. (53), (57), (58), and (59),

differ from those obtained by Blitzer_ since the ellipticity which he

assumed corresponds to a value of 1.67 x lO"6 for J2(2) based on Ref. 6.

zf this value of J2(2) is used in F s. (53), (57), ana (59), the

resulting numerical values are identical with those obtained by Blitzer.

As a result of the analysis presented here and in Ref. 5, it is

seen that for most equatorial orbits the perturbations due to equatorial

ellipticity are negligible_ the principal perturbations affecting

station keeping are the stead_ state drifts in au_Tular position due

to initial condition errors. These stead_ state drifts are not

influenced by the earth's equatorial ellipticity.

The only cases in which equatorial ellipticity has any significant

effect are the synchronous orbit and the two resonan_ orbits with

12- and 36-hour periods. The perturbation of the synchronous orbit

is in the nature of a long period oscillation in longitude about the

position of the minor axis of the earth's equatorial section and a

small sm_litude long period variation in orbital radius.

The perturbations of the two resonant orbits in both angular

position_ ASp and radial distance, Ar, are also oscillatory_ but at

orbital frequency and with an smplitude which increases slowly with

time. Superposed on these divergent solutions are the usual

perturbations resulting from initial condition errors.



It should be noted that the orbital rates have been specified

relative to inertial space. Thus, the orbital rate as seen from the

rotating earth is given by (n-l) BE" In the case of the 12-hour

orbit (n = 2), the relative orbital rate is + eE and the satellite

moves toward the east and is over the same equatorial position

every 24 hours. Similarly for the 36-hour orbit, n = 2/3, the

relative orbital rate is - eJ3 and the satellite apparently moves

to the west and is over the ssme equatorial position every 72 hours.



IV. CONCLUSIONS

As a result of this analysis, the following specific conclusions

can be stated:

o The only significant effect of the earth's equatorial

ellipticity on equatorial orbits is for orbital periods of

12, 24, and 36 hours.

o The 24-hour or synchronous orbit has been discussed in detail

in Ref. 1.

o The 12- and 36-hour orbits are resonant orbits which display

a divergent oscillatory perturbation at orbital frequency.

o _ne amplitude of the divergent oscillatory perturbation in

angular position grows at the rate of .243 deg/yr for the

12-hour orbit and .131 deg/yr for the 36-hour orbit.

o The amplitude of the divergent oscillatory perturbation in

orbital radius grows at the rate of 30.4 n mi/yr for the

12-hour orbit and 34.1 n mi/yr for the 36-hour orbit.

o For any orbital period other than 12, 24, or 36 hours I the

perturbations due to equatorial ellipticity are negligible.

o From the point of view of long term station-keeping, the

drift rates due to initial errors in orbital radius and

orbital velocity are the dominant effect and may result in

large displacements in angle from the ur_perturbed position.

These steady state drifts are not influenced by the earth's

equatorial ellipticity.
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